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NUMERICAL SOLUTION OF A SYSTEM OF LANCHESTER

DIFFERENTIAL EQUATIONS

by

Svein B. Haugberg

ABSTRACT

Using the Runge-Kutta-Merson method a computer program was

developed for the numerical solution of a system of generalized

Lanchester equations. A detailed description is given of the

input-output features of the computer program and of the algorithm

used to solve the equations. Two sample problems illustrate the

use of the program and its flexibility.



TWTwnO•rT TOn

The purpose of this memorandum is to describe the develupment uf a

computer program for numerically solving a system of generalized

Lanchester equations.

'|he system of generalized Lanchester differential equations [Ref. 1]

may be written as follows:

-f() + r, [Eq. 1]

where f(X) zo for X!O, and with known initial values X(O).

The vector' X = (X, X2 1, ... , Xn), Xi Xi(t), describes the number

of units engaged in combat in each of n different. classes as a

tuunction of time. The components fi(X) of f(X) are the

expected numbe-, of' units of class i lost per unit time. The

vector r = (r, , r 92,.., rn), ri =r 1(t), is the rate of

introduction of" new units in each of the n classes. Each

fi(X) is assume)d to be the sum of m. contributions:

m.

fi(X) - fij(X) , [Eq. 2]

where f ij(X) i.; the th contribution to fi(X). These

contri but ions are generally associated with di fferent factor's

causing attrition of type i units.

The rt'!mainder of thi.s memorandum proceeds along the following

I ints. Fir'st, t,he met,hod of numeri .al.ly solving the system of

Lanchester tequations, called the Runge-Kutta-Merson Method. is

discussed. Second, a computer" program that performs the numerical
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solution is described. Finally, two sample problems and their

computer solutions are presented. A complete listing of the

computer program appears in Appendix A.

-
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I. THE RUNGE-KUTTA-MERSON METHOD OF SOLUTION

The Runge-Kutta method of numerical integration is one of several

foutrth-order processes and is applicable to all systems of Ist

order differential equations of the form X(t) -- j.[(t), t]. and

therefore also to all sy.stems of higher- order, that cart be reduced

to the same form. To start the integration, initial values of

t 0 , X(to) ar', r'equirred, The method employs a constant step length

in the; integvation. A difficulty with this method is that it is

often not cl.ear how to determine a proper' step size t.o achieve a

known local truncation errorv at each sttep. The method of Merson

uver(:omes this dif'ficulty by automat.i. ally determining the -,tcp

length requii ed to obtain a p redetetrminrd accuracy.

If we, define a(X, t) to bte

LEIX, f r, )[Eq. 31

then the systiem of [.anchestv equations dv'scribed above becomes

e-(x, t) [Eq. 41

This mor'v compact for m will be used tor, the following discussion

of the Runge-Kutta-Mve'son mvthod.

G iv('11 to, an initial time, X(t 4), the cor'r'esponding initial

valuv of X, and h , the step length, the Runge-Kutt a-Me 'son method

[Ref. 2! al lows one to integrate g(X, t-) to a lat.cr time

t =. to+ h and obtain X( t ) by tht' following pt'oc('ddol'.

First, let. ti, t), t. and td I be t'outr' intc 'mvdia te point..s in

one( integration st, ep h t m'om to t t t. ,, sel't,ti-d a. folIlows:



t to h

Sht --- th to ti.-5

2
t -L ot •

Ld hr fl

Second, define X' X (t.) and gi = gi(X(t t for

0, a, b, c, d, 1.

rhird, compuLte X(tI ) by performing the following five steps

(sub.steps of the integration step h) for each value of i:

I . h .-

Xb = x* + h +i

h b

x. -- X• + +

i . ~

x. Xilt.•) -X + 4nu +,,.

Thv mct~ho( i,-4 of l'ou rth orde"r in h.

Mvi'r.soi ha-; showni that it' the t. ep I'n.•gth 11 is smalt elliough, so

that wk. (can represent gi i[X(It) , t] by a lirn at' appro,.irnatioil ill

X mid t, a go(od est imattion of' t,hv truncation error ii t0h

(ompute( X. i s ' - X The relative ,''or then becomt.s

1 " 17 
E . 7

I. I o IIow.. __ I . , ,} 4. ui - i [E I 7

5 X•.
I

Ifiv Int,_h__ _t klll'Oll for atomat iv-ilI:I adjust i ,ig h .t vp Iength h
is as roll•ws..



Given a predetermined relative accuracy e, if qi >e for at

least. one i, the step length will be halved and the integration

repeated with this new h. This will go on until a. < e for all i."l1
T•" t. he .. +h•r ha.d qi"%/• i-' "1' t -tcp length :ill

be doubled, and this new h will be used in the next step.

To continue the integration, let tj and X(tj) be the new

initial values to and X(to) respectively, and repeat the

procedure described above.

The effect of non-linearities in g may overestimate the smallness

of the step length necessary to achieve the required accuracy.

It is also possible that the Merson process might underestimate

the error, but according to Ref. 2 no example of this type of

behaviour has been encountered.

Applied to a computer program, the advantage of the Runge-Kutta-Merson

method consequently is that the integration always will be performed

with the predetermined accuracy and that the step length is never

much smaller than necessary, which saves computer time.
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2. COMPUTER PROGRAM

2.1 Introduction

A computer program that performs numerical solutions of the system

of generalized Lanchester equations described in the previous

section has been written in ALGOL for the Elliott 503 computer.

The results produced by the program are the values of X and

the other' time-dependent variables in Eqs. I and 2,

for certain discrete values of time in a specified region rt in, tm],

where tin is the initial timel X(tin ) is assumed known.

The program is built around a procedure MERSON, based on the Runge-

Kutta-Merson method. For given values of X at a time t, the

procedure MERSON computes X at a later time t + Dt by

successively increasing time with variable step length h antil

t + Dt is reached.

Another procedure, FUNC, contains all the functions f ij(x) and

ri(t), and this procedure computes the values of the derivatives

when called by MERSON.

2.2 The Main Program

The central part of the main program consists of a loop that.

starts with the initial values tin and X(t in) and computes X

at a later time t =tin + Dt by calling MERSON. The values of X

at this new time are used to compute the other time-dependent

variables for this t. These are obtained by calling FUNC. The

values of all the time-dependent variables are stored in arrays

for later, output. In the next run through the loop the last values

of t and X are new initial values, and MERSON computes X at

t + Dt. The loop terminates at t-tm (t m- tin is an integer

multiple of Dt).



The rest of the main program provides for- output. Some flexibility

exists in the choice of variables output; the different

possibilities will be given in the description of input and

output.

2.3 The Procedures MERSON and FUNC

The Runge-Kutta-Merson method is described in Chapter 1. This

method is well suited for implementation on an electronic computer

LRef. 3]. Equations 5, 6 and 7, together with the accuracy

test,constitute the main part of the procedure MERSON. The following

quantities are required by the procedure MERSON when it is called

in the main program to compute X(t + Dt) for known X(t):

n, number of equations.

t, start point of integration.

z--t + Dt, end point of integration.

x t), (i---l, n), the values of X in the start point
of integration.

h, a starting value for the step length.

hmin, lower bound for the step length. (This prevents
indefinite cycling, otherwise possible in some cases.)

L., desired bound for relative accuracy.

With those quantities given,the procedure MERSON performs one step h

atccording to Eqs. 6 and 7 and the accuracy test with

- t, and calculates X(tL ). The derivatives Xi . gi (i - 1, i),

needcd in ivery substep, are calculated by cal.ling FUNC bte'ore each'

oF them. The computations are continued by letting ti and X(t 1 )

bt, the niw to and X(to) respectively. When the integration has

rt'ached a stage where t + h exceeds the end point of i ntegrat ion,

i. a final step length /-to will be used to reach e exa'tly.

lor this last, special step a better accuracy than the ont' needed

will re.sult because z- t 0 <11.
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Result,, pi-oduced by MERSON are:

L, its valuc is now that of t -r Dt.

X (t), ti --1, n), the values of X at the end point.

Aflow diagram tor the proced~ure MERSON is shown in Fig. I.

order to avoid particularl~y long ru~n time on the computer'. fIn this

case, however, it migght happen that the desired accuracy is not.

satisfied. As an indication for' the user of the program, the

character followed by the relative truncation error is printed

inl the- table of' X i(t) every t~ime h min is used as the step

I vrigth.

The vesult s of: the computations are print~ed out- for ce rtarin di scr'ete

values of t, starting with t,.i arid increasing repeatedly with a
constant, time inrterval Dt until t is reached. Since the

In
integration of each interval. Dt is an independent computation

witLh new initial conditions, these init ial conditions can be changed

at. the start point. of any inrte rval. The refore at the-se poi nts the

arnalytical form of' the turret.ions4 t' .ý ( X) and r ( t) can be chanlged,

and inrstarit~aInvc)u. i ntrudrjct ions ot Unlits of alhy clas i canS b '11 e made.

W4h(!n(-ver such charnges or i nt roduict ions occur', the. region of

itteigrat iori has to be divided into sinai it' regions such that all

changes aoci i nt roduct i onl occuir at. the start Point. ot, a region,. aind

chat. cvef-rv reg ion is an integral numbner DL.

A s nerfi t, i onteed abo vc i the 1)r1 og ram a I I o ws t'o ir a cho i ce i n t he .st' I ct i on1

of van' i ill I v~s anid comblht i nat, i ons of them'i g i vein as outpurt .Tht' olit puit



consists of:

a. The number of units introduced instantaneously and the

corresponding instants in time.

b. X. vs t for i=1, n.

c. X. vb X. for specified index pairs (i, j).
d j

d. f. v. t for specified indices i.I

e. r. vs' t for specified indices i.

f. f ij/fi (in percent) ,.s t for specified indices i,

and specified indices j for each i.

g. fi/f vs t for specified index pairs (i, j).

The last five outputs are optional and may be skipped by not

specifying any indices. This output form enables the user of the

program to study the importance of instantaneous introductions and

changes in attrition functions and introduction rates, and the

relative importance of the different contributions f ij(X) causing

attrition of type i units. This will be illustrated by the

sample problems in the next chapter.

There are two forms of output: paper tape and plotted. The paper

tape output is punched on the Number 1 punch, and, of course, must

be run through the Flexowriter to obtain a printer output. The

plotted output is generated by the' Calcomp plotter.

Input

There are two kinds of input to this program: input parameters

and input rtinctmions. These arte listed in Tables I and 2.

11



TABLE 1

LIST OF INPUT PARAMETERS

11n the following list the letter in nAro-nt-ho • elictw..ing the

explanation indicates whether the variable is integer (I) or

real (R).

N, number- of differential equations (I)

DT, the constant time interval between two following (R)

output points

II, a start value for the step length (R)

II MIN. lower bound for the step length (R)

F, desired bound for, relative accuracy (R)

MI, maximum number of contributions m, of

f i,j(X) to t' i(X) (i 1- l,n), [Ni -max(mi ),i - ,n].

NI , numbe (i ot t.ime vegion.- acordirig to the instantaneous II)

introductions and the change of functions

NS, number of pairs (Xi, Xj) to be plotted (I)

IX i Vs X,i, t as a parameter)

NI•, number of outputs (print and plot) of fi Vs t

NR, rnumber of outputs (plot) of rI Vsi t, (I)

N2, numbher off outputs (print and plot) of

f. i/.fi Vs t (number of' diff'rrient indices i)'II
NP. numb: r of outtputs (print, and plot) of 1)

t i/'t'.* vs t.

MAL .1 it. I, N itn, ruumber of' Dt. in+ vaiqi o•I NI r'ft)ni.4 (I)

(ftihl' Inerithi, of thve r' •ioiiun a'v MIAI L. DT).

It, init ial I ijane

DX[I.,,J] (.I I, N for. 'ach I I. NI i. i ntifl atnta 'iii (RI

II
irit, r1 l( 't110 1 1+ lol i (| lililt ."i in Ilip' .•t ilt. i)Oinlt ofI

ti',goiiuu 1. Th,' ,h it i,,l v~ilii'.%, of X.i I i)

,1r'- i Ii' I m ,n d tue'ti" 3I. I 3,



tU, V (K - I, NS), f;pecificatiorn of indice.-s in NS plot s
of X. vs X.

I J

U (I = 1, Ni), -sp'cification of index in NI outputs (I)

U, MI (J = 1, N2) , specit'icat.ion of index i and number- of (1)

different indic-ex j for each i in outtputs

ot, f. .it. V-, tI j 1

V (K= 1, MI for vach J= I, N2), .pecitication of index j I)

in MI outputs of '.. I, . .vs t

U, V (J-- I., NP), specification of indices i and j in NP (I)

outputs of t i /r. ,v.s t;

U (I - 1, NR), specification of index in NR outputs (I)

ot 1'. vsi t

The input data must be given numer'ical values and punched on a

data tap,! in then f'ol]owlng orlde r:

N, DT, H, HMIN, E, MI, NI, NS, NI, NR, N2, NP

MA[lj for L-.I, NI

Ti

(DX[L, J1] for .1 1, N) for' t-- 1, NI

(U, V) lot' K - I, NS

II fot' t I , N I

(I", MI, (V for K - I, NIl)) tfo' . I, N2

tIt, V) 'or .1 1, NP

I. for I - I, NR



TABLE 2

LIST OF VARIABLES USED IN THE INPUT FUNCTIONS

T, corresponds to t

XCI] (I=1, N), corresponds to Xi(t)

FX[I, J] (J=1, Ml for each I=1, N), corresponds to
f, .(x)

RT[I] (J=1, N), corresponds to ri(t)

In contrast to the input parameters, which are entered as

numerical values, the input functions f ij(X) and ri(t) are

entered in the form of program statements in the procedure FUNC.

How this is done is explained in Chap. 3.

2.i Limitations, Timing

Because of the limited capacity of the computer store, the upper

hound for the number of differential equations the program can

solve is 19. However the practical bound is lower because the

running time for 19 equations is probably excessive. The limitations

resulting from the output format are:

Maximum number of equations: 14

Maximum initial value of Xi: 9999 units

Maximum length of the region of integration- 200 days.

Thvsv can b4! changed if necessary by altering the program.

It, is very difficult to estimate the running time for a given set

of equationts. The running time depends on the number of equations,

tch#' desiried bound Cot' relativye accuracy, the form of the equations,

the I engt~h of the region of integration and the output form. However,

the following results give some indication of the runnin g time.

14



For the two sample problems in Chapter 3 the number of

equations was 2, the desired bound for relative accuracy was 0.01,

and the length of the region of integration was 100 days. The first

has one contribution to each attrition function fi(X), and the

second has two contributions. The running times were 5 and 11 minutes

respectively.

A system consisting of 5 equations and a maximum of two

contributions to an att.rition function has also been run. The

running-time was approximately 30 min.

15
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3. SAMPLE PROBLEMS

Two sample problems have been solved to illustrate the possibilities

of the program. The first one shows how to make instantaneous

introductions of units and how to change the analytical form of the

introduction rates. The second one shows how to manipulate a

system with more than one contribution to the attrition of some

classes of units,

3.1 Problem 1: Lanchester Linear Law with Replacement

Consider the system of two simultaneous differential equations

X, = -aXX2 +r,

i2 = -IX X2 +r 2

with initial values XJ (O) = 1000, Xa(O) = 50, and attrition

coefficients a =5.10-4, =-210-5. This is a system of

Lanchester equations with

f 2 (-X) f =20XXtf2 (x) - fr•(x) = xx

[only one contribution fij (X) to each f.(X) ].

An additional 400 units of class 1 are introduced at time t 20.

Introduction rates:

r, (t) o) for all t

r2(t) (0 for t 5 50
0.1 for t >50

I I,



The following part of the optional output is desired:

a. X2 Vs X1 (t as a parameter)

h, - ..I-. I t

4. *V. W ., 4 4. -

C. r2 %VS t

Input parameters. Let the region of integration be 100 days.

According to the instantaneous introduction and the change ot

introduction rate, the region of integration is divided into

three sub-regions. 0-20, 20-50, and 50-100. The instantaneous

introductions must be specified at the start point of each sub-

region. This means that the following six numbers must be given

as input:

Class I Class 2

t -- G 1000 50

t '20 400 0

t =(5 o U

The time interval Dt must be chosen such that the three sub-regions

become :An integer multiple of Dt. Let Dt -- 5. This implies that.

the number of time increments Dt in each sub-region is 4, 6 and 10

respectively. Furthermore, let the initial value for the step

length be I day, the lower bound for the step length be 0.01, and

the desired bound for the relative accuracy be 0.0I (1%). This

gives the f'ollowing scheme of input, data to be punched on paper'

tape (for def inition of input parameters see Table 1):

DATA:

2 5 1 0.01 (1.0 1 1 . 1 2 1 11 0
4 t, 10

400 ( I0

G I
212
12

END OF DATA;

17



Input functions. The input functions f ij(X) and ri(t) are

easily inserted into the procedure FUNC by copying the existing

paper tape for. the procedure up to and including the line

"llremmPnt Tnapvt thp inpst fenntlfi •_;1I

and punching the following four statements:

FXFI,1l:=o.OO5*X[l]i'X[2];
FX 2,1j:=0.O0002*Xr ]'r X[2];
RTLI]:=O.O;
if L=1 or L=2 then RT[2]:=O.O else RT[2]t=O.l;

(The three sab-regions are identified by the valuea L =1, L= 2

and L= 3 respectively.) Then copy the rest of the tape. The

procedure FUNC then takes the following form:

£Numerical'solution of a system of Lanchester differential
equations4;

begin procedure FUNC(N,MI,T,X,FFXS,FX,RT,L);
value N,MI;real T;integer N,MI,L;
array XFFXSFX,RT;
begin integer J,K;

comment Insert the input functions;

FX[ 2,1]:0=O.00002*X[l]*X[2];
RT[ 1]:=O.O;
if L=1 or L=2 then RT[2]:=O.O else RT[2]:=O.I;

for' J:=l st I until N do
bein Fxs[TJ720.O;

for K:.= ste 1 until MI do
FXOS [ +FXs 4F 7,, K
F[J : =-FXSrJ +RTLJI;

end;
end FUNC;

Output. The numerical values of all the output variables are given

in printed tables obtained from the output paper tape. The plotted

output is presented in Figs. 2 to 5.
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Figure 2 shows the number of units in class 1 and 2 as a function
of time. The effect of the instantaneous introduction of units in
class 1 at t= 20, and the change to a non-zero introduction rate
in class 2 at t =50 is obvious. However, the result of the combat,
if continued, does not hprnmna Pr o = thi-- I sm. put.ing
of X2 Vs X, with time as a parameter in Fig. 3 is very useful in
examining this. The instantaneous introduction changes an apparent
victory for class 2 to an apparent victory for class 1. However,
after changing the introduction rate of class 2 from zero to a
constant non-zero value, it seems as if class 2 will win the combat.

Figure 4 shows the zaumber of units lost per day as a function of
time for class 1. and 2. The two curves are identical in this case
because f• is pro-,ortional to f2  and the plotted values are
given as a perc&vtotpge of the initial values.

Figure 5 shows the introduction rate of class 2 as a function
of time.

3.2 Problem 2: Lanchester Mixed Law

Consider the system of two simultaneous Lanchester differential
equations

I X -xX2 + a 2 X2  + r

-Q -(s1XI X2 +2 X2 ) + r2

with initial values XI(O) 1000, Xa(0) = 50, and attrition
coetficients a% = 4.1(- 4 , 012 0.1, 01 = 1.8 .10-5, 02 ().0 2.

This system has two contributions, tfij (X),to each fi (X):

r,(x) W i1 (X) + f1a(X)

21



where

U (X)= *1 X1 X2, f2(x) = SX21.

Let the introduction rate ra(t) be zero for all t.,

The following part of the optional output is desired:

a. X Vs X1 (t as a parameter)

b. f. vs t, i = 1, 2.

c. f ij/fi s t, j =1, 2 for each i =1, 2.

d. fj/f2 vs t.

Input parameters. Let the length of the region of integration, the
interval Dt, the initial value for the step length, the lower bound
for the step length, and the desired bound for the relative accuracy
be the same as in Problem 1. Since neither instantaneous
introductions nor analytical changes of the functions f ij(X) or
ri(t) occur, there will be no division of the region of integration.

This leads to the following scheme of input data to be punched
on paper tape (for definition of input parameters see Table 1):

DATA:

2 5 1 0.01 0.01 2 1 1 2 0 2 1
20
0
1000 50
2 1
1 2
1 2 1 2
2 2 1 2
1 2

END OF DATA;
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Input functions. In the same was- a:! in Problem 1, the existing paper

tape for the procedure FINC is copiel and the following statements

inserted:

•x~i 1 iOO O4: t 1! -• ; F • l 2"!: =(;., l:X"72

RT 11-RT721-0,¾i;

Output. The numerical values ot all the output variables are given

in printed tables obtained from the output paper tape. The plotted

output is presented in Figs. 0 to 11.

Figure 0 shows the number, of units in class 1 and 2 as a function

of time.

Figure 7 contains the plotting of X2 Vs X1 with time as a

parameter. This figur-e clearly shows the result of the combat,

if continued.

Figure S shows the number of units lost per day as a function Gf

time for class 1 and 2.

Figutre.S 9 and It) are very convenient in examining the relative

importance of the dirffrent, contributions to an attrition

function r (X). iure 9 shows that r' (X) constitutes the

g rea test pay't. or t"1 (X) ill the beginnitig of' thet combat. Ilowever.
. tihOe time iz•.tst. , t'1;.AX) i ncrcase.-, while' f'l (X) decreases;

conrsqta ent Ly t1 z (X) wi t I dom i nat' afte r some t. i me. The same

re Itat i oi appeva' I- in F i g. I() t'o. tI, C 1  X.i and fi';(X),

I' kirut.f. I I i n1di ti.e,' t hat number of c las.s I uni t.,. lost pet' cl ass 2

ulnit, lost. ,cre'E'se'.- With time, e'mphiasi/ing th- f.at, that cl ass 2

w i I I wiit the combat
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3,• Ge.nleral Remarks About th-t Input Functions

Samplet problem I ;hows how to change the analytical form of one
tfl_.t ion r1i (t) for some t. 'rh,, same is of" cour~se possible for-

anly vI I (t) and any t'i~j X) . If some c~hanigt.- exists tfor a function,

Say lfal(X), tihe analytica~l form of this function must. be specifie~d

fu•r ,e'very sub-region (L:ý [, NI) in a stateme:nt of' the, for'm

i Gdi(ated in Prioblem 1.

Since MI is the maximum number or' contr ibut ions f Lj (X) t.o

r" (x) ( iz n) , soome of the t'uct itins F X F1, J1 may of course b,

fjual to r'ro. floweve r, all of them have to be inserted into

.'UN 3:-. 1, M.1I for each I - 1, N). Li kcwise, all the t'uictions

T[ 1] (1 = 1, N) must. be i nserted.

It it happe.ns that. two or, more of tht. contr ibut ioris tf. (X.)

tnr the -rame index i arer not desired as output, thesc may be

pilt tgrt.her irk ont. lincrtion FX[ I, ,T", This will rducet the 1runin in.,

I iu, o(n t.ht, (.omplit('r.
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APPENDIX A

(OMPUTER PROGRAM LISTINGS

2Numerical solution of a mystem of Lanchester differential equations?;

begin procedure FLWC(N, IT,X,F,FXS,FX,RT,L);
commnt This procadvire contains the input functions.

Parameters.
N, number of equations.
MI, maximum number of contributions to one attrition function.
T, a variable for the time.
X, array containing the number of units in each class at tim T.
F, array containing the values of the derivatives at time T.
%XSarray containing the valuas of the attrition functions at time T.
rX, array containing the values of the different contributions to

the attrition functions at time T.
RT, array containing the values of the introduction rate functiono

at time T.
L, variable which has the value 1 when T in first sub-region, 2

when T in second sub-region ....... ;
value N,M!;real T;intoegr N,MI,L;
array X,F,FIS,FXRT;
!g!in integer JK;

comment Insert the input fmnctions;

for Ji=1 sto pI until N do
1 2 -

for K:=1 step ! until 01 do
-s[- a:=FXSrja+Fir-j ,Ki;

FlJ]",=-TXS(Jl+RT(J[;
end;

end PUNC;



I
proaedure M!SI(NHMl/TrZH HMUN,E,X,FFXSFX,RT,LL);

comment This pre:edure performs the integration from T to Z.

PFezmter s•
Z, end point of integration.
H, stirting value for the stop length.
HWIN,.ow r bound for the step length.

E. desized bound for relative accuracy.;
vatue N ,MIRVINE;

real T,.,M~qE
integer N,MI.LL:

aSrray 1~X,?SFX,RT'r;
comment Variables:

Q, 1. The rest of the interval of integration.

2. A variabla ised in the computation of the five sub-steps.

'J, 1. A variable used in the computations of the five sub-steps.

H/3 =H!/3

HS, sto.te 1i for a possible restoring.
"IS, stre& T for a possible repeated integration.

I .4JSW,indsa variables.
G, &rrty stor'ng X for a possible repeated integration.
PL,Lrrays for temporary storing in the computations of the five

sub-sotpa.
Buolvan varisblai.-
BC4true if E<']
8F:f•gsl if the conditions for doubling the stoep length are not

satisf ied.
BH-=false if the step length is halved.

5R-folsoe if H is equal to the rest of the interval.
BX=fslas if H=HMUW;

begin real Q,U,H3,HS,TSES,
int&er IJ,SWr

ara G ,P,L[E, !NJ;

Boolesan BCBE,BHDBR,BX;
switch 3SSS=SAVEBACK;
comeent Check some input parameters and initialize;
if HINN<O then 4MlN-O.0t~abs(H)-

BH:E Rf'-X * =true.•

E, -bs(E) ;
E5"=5*E;
H , ---* bs (H)

SAVEM if BC then
t~i[L TS~zT

for J'=1 stop I until N do

GJ I d --XrJ]=

mmm m m s m m l m m ,;



D&A~: HS:=R;
Q(-T+H-Z;
DE:=truo;
comsmntlTest end of integration range;

i D~ then

bein :=4-le;

end
Next integrate one step;
R3 :=9/3;
for SW:=1 !tep 1 until 5 do
begin switch S,'=SWI,bW XSW3,SW4,SWAX;

TJC(N,N!,TX,F,FXS,P1,RT,LL);,
for 1:=1 !.te2 1 until N do
begin switch S*=ST1,ST2,ST3,ST4,ST5;

switch SiSSS:r-NIZXT;
Q?,-JI3-F[I);&oto S(SW];

ST3: PI1j:=U:-=3*Q;
U:=0.3'75*(U.4Ltl]);goto NEXT;

U:=1.5*(U-PF!J);gottO NEXT;

Q:=abs(2*U-1.5*(Q+P(IJ));

if 5W5- then
begif 11C then

begin U::;-aX(IJ);
U:=i-.1 U<0-3 then Z5 elseo E*U;
cooinet Test adJustment of the step;
If O>U and EX then
begin BR::true;

DH?=false;
H:-0.5*R;
if WKHMIX then
begin H: --MIN;

DX: =false;
end The step was halved, restore X and T, and go back

for repeated integration with this new step;
for J:=1 se.1 until N do

T:=TS;goto BACK;
end if Q;
if QŽO.03125*3 then BE:=false;

end if BC,;
if not DX then
begin if 1=1 then prin!t punch(1) ,Rfls1O??;

print punc (1,) saaeline,Q4?,ecaled(4) ,E'Q/U;
end;

end If SW;
end for 1;
got* WS[WI;
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SWI : T:7.K-3;&(toG SVEI;
S13, ~T:.O.5*R3;goto SWKX;
514: T.=T+0.5*R;
SWAX: 21:=M; commient Dummy statement;

SWUU: and for SW;

begin cammnt Wemt a possible doubling of the stop;
if 82 and DR and BR then
begin H:=2*H,

BX : =true;
end;
BH:=true;

end if BC;
if BR then Coto SAVE;
W11 =15;-

end R11SO;

procedu.re AXPU9T~rM,XU,R1 ,12.i1 12);
cosimnt This procedure plots axes and axe values for the maxijAm

axe values given.
Parameters:
TV, maximum absoisma value.
XIM, maximum ordinate value.
RI .R2,soaling factors.
11,12,numbor of divition. resquired on the two axes;

resal TM,XN,fll,R2;
~gr11,12;

begin integer J!
II.!=(T344.0)/10.O;
R1 =7110.0^10.0* 11);
r2:=('X344.O)/1O.O;
R2:=600.O/(10.O*12);
setorigin(200,Rl R12,I);
axes(1O.1C,11 .0,12,0);
plotter(I0,1)
for J:--O stop 1 until ri Aa
bei movoepn(J*10.0-30.0AP1 .- 20.0/112);

end;,
To- j:=-o at 1 until 12 do
begin movepen(-5O.O/R1 ,J*I0.0-4.0/R2);

print digits(3) .J*10;
Ind;

end AXPWTr;
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coment The main program contains a loop calling MkSCWf rvpoatedly and
storing the values of the variables at the end points of every
interval DT. The rest of the main progras provides for output.

Variables:
Dl, the interval length.
TM, end point of the region of integration.

N'Thmaximu a"e values for plotting.

M, index variable for the time output points.

Ml,N2,U,V,integer variables with different applications.
NI, number of sub-region. of integration.

NS,N1,NR.N2,NP,inputpar&L*ters which provide for the optional output,
MA, array containing the number of DT in each sub-region.
W, array containing the value of M at the start point and end

point of every sub-region.
WNN3,N4,NM,N5,X6,arrsys storing the different indices used in the

optional output.
TPL,XPL,FXSPL,FXPL,RTPL,arrays storing the values of T,X,FXS,FX and

RT respectively in the output points.

DX, array containing the instantaneous introductions of units at the
start point of each sub-region;

begin reall DT,,HMIN,EoT,T•,Z,XM,YM,R1 ,R2;
Integer I,J,K,L,M,N,11,12,Ml,Ml,K2,NI,NS,Nl,NR,N2,NP,U,V;

"read NDT,H,HMIWE,MI,NINS,WM,NR N2,NP;
if N> NF then 1:-N els* I:--NP;
begin Integer array MA[1:NI] I(l1 :2*NI],NN[O:NI],N3,N4[0:N2],N]fO:N2,1:MI1,

N5,?I6[ONP1;
K:--O;
for L:=1 stop 1 until NI do begin read MACLI;MN:±M•ACLI end;

punch(l);
rit £1slIUMER (F EQUATIONS, N =?,sameline,digits(3) ,N,

£elsl?A GUESS F3R THE STEP SIZE,H =?,samline,scaled(4),H,

f£el58IWER BOUrNJD F THE STEP SIZE,HMIN =?,nsamline,HEIP,
elsl?DESIRD BOUNID Mt REATIVE ACCURACY, E =? ,samsline ,3;

begin arra XF,FXS,RTl:N],TPL(LO:NI;

comment CBS :; !ar*a XPL(1:M.I:I],FXSPL,RTPL[1:M,1:N].FX[l1N,I1MN],
FXPL(1 'M,1 :N,1 zMIIIDX[1 :i4,1 :N-];

switch S:=L1 ,L2,L3,L4,L5,L6,L7,L8,L9;
coement Read and print initial values;
road T;TPL[O] =T;

for L:=1 !stp 1 until NI do
SJ:=1 step 1 until N do read DX[L,J];
print £l3sol?INSTANTAMIEM3S INTRODUCTION OF UNITS:? ,fl2s9?T?;

for I:nl ste 1 until N do print sawsline,QQs6?MX?, digits(2) ,I;
TM:=~T;

for L:=1 !.L*2 1 until NI do
!!t print M£??,samwllne,scaXed(4),TM;

for J:=1 ato 1 until N do print saueline,soaled(5) ,DXfL,J];

end;



f it e2l3o9?1V;
ar : t"p I until N do

print ali.Q7Xdgts2.1
for J2=1 1tp until N do begiA XPL[1 ,J]1=1[1 ,J];IrJ]:=O.0 end;

comment Start integration of each sub-region with now initial
va~lues X[J];

fur L;=i step Iuntil ali do
begin M1--I+;2=IKr-;U[*,I]=l;[*]=2

TPLrM11:=TPLrM1-1];print eel??,samelineucaaled(4) ,T;
for J:=1 sL9 1 until N do
"Gsi X JT: =X Jl-+D7XtL, J1 ;print sealno,ucaled(5) ,XtJ];

if LM 'then XPLEK1 Jj:_=100.0*X[J]/Kn[1 ,J];,
end;
comment 'Call FL74C for computation of the output variables

at the start point of sub-region no. L;
FMCC(NIMIT,X,F,FXS FX,RTL);.
for J:=1 step 1 until N do
besng xOMri7XSP TCM1 Pxscjl(J¶RTPLrul J]:=RT[J];

for K:=1 Ist Iuntil II do

end;
commnt Mhths value of T at the end point of sub-region no. L;
TE:=-T+.NACLI*D?+O.1 ;U:=M1 ;
comment Call MEUSI and 7UNC repeatedly for computation of the

output variables in each output point In sub-.region no. L;
for Z:=T4DT stop DT until TV do

F CCN~,NU5I(.KI,T.,Z 1HF,HN!,E,.FFSXT

M:-,ITXF.FSFZIL

comment Print T and X in output point no. N. Store the same
values for later plotting;

Print fE17??,~saeline scaled(4) ,T;
for J:=1 step I until N do
bei prn asmeline~sca led(O) ,t'J;

XPL[V,Jh,=100.OeX(JI/XPLCI .J];
7XSPL(N,J1 ?=FZSEJI;RTPL(M,J]?=RTrJ1;
for K:=l Istp 1 until UT di

end;
end

end for L;
comment Plot X[11,1=1 N, vs time;
RU =100.0;
for J:=1 !!OR 1 until N do
for L:=2 ste I until 2*NI do

5&___ Mu'=W I;TfPri, .T¶xv then xN:=xnL(M1 .JIl;end;
AXPOtr(TNKXV,R1 .l2',I1.12);
movepen(350.0/R1,-40.0/R2);.

mow open( -50 .0/Rl ,100.0/Rt2) ;
print plotter(10,3),eNumber of units in per cent of inittilvaluo?;
~o'vspen(-1 80.0/Ri ,500.0/R2) ;

print plotter(10,1) ,eInitial'A;movepen(-180.0/R1 ,480.0/R2);

print plotter(1C,1) *Qvalues:P;



for J:=l stop 1 until N do
bei movepen(-iSO.0/Ri ,(480.O-2O.0*J)/R2);

print plotterflo,1) ,eX?,digits(') *J,2?,aiignad(4,fl)),XPL(1,JI;
end;
for J:=l step 1 until N do

Dw2 movepon t rILL1 II , IUU. U)
penlovez;
for I:=2 step 1 until M do
dravlino(FT!TI),XP-L(! ~JJ)
print plott~r(I0,1) ,'X?8digitt(2) *J;

end of plot X[11;
movepon(O ,20* 12) *
coment Plot xriJ vs x(ji for specified index pairs (1,J);
Tf -Ns-o then goto Li;
fo-r K:1l step 1 until NS do

'9fIn read U,V;
for ml:=V do
beain for M2:=U do

beirin XM:=YU:=100.O;
for L:=2 !stE I until 2N1I do

2b in if XP~f)W=L1 uil>X then XIE:=XPLI[WLIK1j;
ý17 YPLrmrO4L].2i>Yh th*enWYm~rM[WL],N21;

AXPLOT(XN,YN,Ri ,R2.Ii .12);
fovepn(1 00.0/Ri ,-40.0/R2);
print plotter(10,I),
eNumber of units in per cent of initialvaluo, X?,digits(2),Vi;
Uovopen(-50.0/R1 ,50.O/R2);

eNuaber of units in per cent of initialvalue, X?,dIgitsC2).M2;
.ovepen(-i 80.0/Ri ,500.0/R2);,
print plotter(10 .1) ,21nitial? ;.vopen( -180.0/Ri 490.0/R2) ;
print plotter(10,1) *evalueu:?;
for J,=1,2 do
begin .ovepen(-1SO.0/Ri ,(480.0-20.0*J)/R2);

print plotter(IOI) ,eX?,digIts(2)JIf J=I then Mi elseo 2) .k=?,

aligned(4,O) *XPLr1 ,(if J=1 then M1 else7 32)]1;
Ind;
mov'epen(100,I00);
print plotter(10,1) ,E T=-?,&ligned(2,O) ,TPLE1 1;
uovopon(100 100);
penlower;
for 1:=2 1t until V do
fr-awline(x-PnrIil.m-xpLrI .-M2])

print plotter(10,I) 2QI'?,aligned(3.0) .WULM1:
.ovoepn(n0j0*12);

end;
end;

Ind of plot vii1 vs xrjl;



commnt Print Fxsrri vs, timas for specified indices 1;

Li: puptch(1) ;if Hi -0 then AtoL2;
print eel3s97T?;
?foZI:=1 step 1 until Ni do~
begin realI U;

WegNtMprin it Q s7'.amwlin*.E~ElaFdigitW 2)J];I

for J:=i !I~i~ 1 until M do

for I:: Lt.ýE 1 until Ni do
print samalino..ca-led(5) ,FXSPLtJ.NN[Ill;

end of print IF'LS[I1
camment Print FXfl,J1/FXSfUI for specified Indices 1, and specified

indices J for each 1;
L2: if N2=0 then got L3;

print Cel3s9?T?;
To-r:=lstep I until M42 do

SýKin ,read"-M JM1;3 tJ I:=U;NF4[rj i: =mi
for K;=1 itep 1 until KIi do
begýin read V;

uN(j,Ki:.v;
for 1:=1 ate pI until E do
FXPLE 1,U,-V] -02oo.o*7nPrI-,u,v],/Fxspi~rI,

end-
print eelsiO??;

end;
for 1:=1 !te2 1 until M do
begin prEint eel??,sameline,scaled(4) TPL[I];

for J:1a until N42 do

for K:=lstp until N4rJI do
begin M2:WNNJ,KT7

print sameline scalood(5) 1rXPL[1 1 KM2J;
ejnd;
print alsO??;

end;
end of print Fxr.frjI/FXSrt];
comment Print FI(Srl]/FXSrJ] for specified Index pairs (1,J);

L: if MNP-O then goto U;,
Print M~3 @97?T~
for J:=l stop 1 until NP do
begin rond U.V:i5(CJ1:=U;N-STJ I: - V;

print saaelin*E,~s!'?F?,digits(2) ,U.C/F?,V;
for 1:=1 !wte1 until M do

end;
for 1*'1 stop I until M do
begin pritnt M~?? samelinc .mclald(4) ,TPLr I;

Lfor JT=1 !,tep I until NP do
prInt sauielinoescalied(O),XLEI,JI;

end of print v'xsrflFXSrJ1;



Cc:rr~.t'.nt Plot F3SrT1 vs time;
L,4 If NI.-O thal goto L5;

XM: JOO.C:
for j:=,Irse anii NI do

bjn AV =NN(JI
ior 1:7 .- until Mi do

FxsPLr:.( %6 41-.ioo.0--xsPLT-T Mi M ,'FXSPLrl ,i1;
fcr 1,:=~2 stop ! until 2*N1 do
Oegti. M2 -?n~r1-;i~f FXSPLrMd2.M1I>Xx then XM-=YXSPLrM2,Ml1 end;

en d
AXPUflT('NM.XM, RI , R2,f11.12);
movaor.,.3W5O./R1 ,-40j.0/t2)

-prini.: plot ter(O01 3, MmHaql-
7 0.O/R2) ;

_pr-rnt plotterT7VO3" VNumnb. of units lost per unit time, in per cent
of ±jnit.'val. ?;

PLŽ.piotter'C1O.'),5initial7:uMcV&pen( .180.0/Ri ,4R0.0/R2);
r~i r,, plot tryl (,~ £ C-vlues:?;

for J:=^. __t I until NI do

PrLint plotter<iO,2I eF?,digitsG'2) M. e=-?,aligned( 2,. ,ýFXSPLrl ,M1 I;

r j-1~ uar-11 NI do
~~In C' vq ?~ ..T PoW:-p 1N(J ; er;

for ).=2 Stav unt-.1 M do drAwline(TPLrI1,FXSPLrI,M1j,;
jrt p 1ctte!:- 0 £F ?,dl gits( 2),hWn

0.%d of plot FXSEI];
mOv epeO n312)~

conment Plo~t Fxri.J1/FXS[1Ih

fo=r 21u, until N2 do

for K:=! * -p1*jr.til MI do
v -v=urj, K1

l~ .:=12 atp I until P*N! do

ir t)ýXM ths'n XM-7:j

AX1-IDr*Z1M,KXVR RT2,T 12>

Movepen( - 5o.0!'Rl 'i ./2

Z._i!t plottertiO,3ý JF' I 3/F T ,in per cent?;

!wK>:1 ___N, I until Ml do

it Fxr:r i..iien then
Smovepen(TPLFr 1, -FXPrIf II J.V1) :penlov~r:

!nr .- ?s!-p 1 urtil H1 do drawl ins(TPL[ 11, -TXPTJ I .t,V11



.ýLia moveponýT~PLCwI 1FXPL[1 ,U,VD) ;roniover;
for li=2 at~ 1 until M do dravlin*(TPL[1I,FXPL[U,U,VI);

end,

comment Plot FXS(I]/FXSCJI;
L6: if NN-O then goto L7;V.--O;N*J(P:
L9: For J.-=1 i!top I until N do

beg~in XM:--0.0;
for L:=l t I until 2*N1 do

if XPL[M1,J]>XM then XM:=xPL[M1,J1;

if %M>2000 then
begin K: =1 -

for K,=KOI0 while XM)200O.0 do
ýýl M2f=K;XM:=XN/10.,O end;E*=I.0/M2;

if XIK2O.0 then

for K-=K~iO while M320.0 do
!be&Ln M! =K:XM!=Xk*10.0 end-E>M2;

Ind;
AXPLDT(TMXM,R': R2,11 ,12'

movopen(350 .0/Ri1 , -40.0/R2),
Print plotter(1O,1),Mm*a(dysy)?:
movepon( -50.0/Ri ,'00.0/R2);
If '4-Ci then E2 int plotter(C0,3) freepoint(5) ,E.Q*F I /F J?
el1se prt p-- erI3 ,topoint(5) ,E.E*R?,digits(2) ,N~rj);
movepen(TPLrI I.E'X.PLtI .1) ;penlower;,
for 1'.2 !.tO.I until M do dr~wlin*(TPLt11,E*XPLrIJI);
if V=O then print plottor(10,i) ,CF?,digits(2) ,N5[JII~ F? ,N6[J]

else print. plotter(iO,1) ,ER?,digits'C2) ,N5[J]:
aovepon(O7O'012) -

atnd of plot FXSr II/rXS[IflI
if V=1 the~n goto LS;
Tomm~ent Plot RT[I] ve time for specified indices 1;

L7! if NR=O then goto 1.8;V-=l:NPNR;
For J:=l ateop I until NR do

!ni ead u;N5[ TIT=u;
for T:=1 !tep I until M do XPLFI.JI-=RTPL(X.UI;

Ind got2 L9;
comment end of plot RVfII;

LB- N-4-N;coaLent IrA~imy,

end;,
end;

end;
end;
end;


